R/exams: A One-for-All Exams Generator
Written Exams, Online Tests, and Live Quizzes with R

Achim Zeileis

http://www.R-exams.org/
R/exams: A One-for-All Exams Generator
Written Exams, Online Tests, and Live Quizzes with R

Achim Zeileis

http://www.R-exams.org/
Solution

Using the product rule for \(f(x) = g(x) \cdot h(x) \), where \(g(x) = x^9 \) and \(h(x) = e^{2.7x} \), we obtain

\[
\begin{align*}
 f'(x) &= (g(x) \cdot h(x))' = g'(x) \cdot h(x) + g(x) \cdot h'(x) \\
 &= 9x^8 \cdot e^{2.7x} + x^9 \cdot e^{2.7x} \cdot 2.7 \\
 &= e^{2.7x} \cdot (9x^8 + 2.7x^9) \\
 &= e^{2.7x} \cdot x^9 (9 + 2.7x).
\end{align*}
\]

Evaluated at \(x = 0.88 \), the answer is...
R/exams: A One-for-All Exams Generator
Written Exams, Online Tests, and Live Quizzes with R

Achim Zeileis

http://www.R-exams.org/
Motivation and challenges

Motivation:
- Many of us teach large lecture courses, also as support for other fields.
- For example, statistics, probability, or mathematics in curricula such as business and economics, social sciences, psychology, etc.
- At WU Wien and Universität Innsbruck: Some courses are attended by more than 1,000 students per semester.
- Several lecturers teach lectures and tutorials in parallel.

Strategy:
- Individualized organization of learning, feedback, and assessment.
- The same pool of exercises at the core of all parts of the course.
Motivation and challenges

<table>
<thead>
<tr>
<th></th>
<th>Learning</th>
<th>Feedback</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous</td>
<td>Lecture</td>
<td>Live quiz (+ Tutorial)</td>
<td>Written exam</td>
</tr>
<tr>
<td></td>
<td>Live stream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asynchronous</td>
<td>Textbook</td>
<td>Self test (+ Forum)</td>
<td>Online test</td>
</tr>
<tr>
<td></td>
<td>Screencast</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Motivation and challenges

<table>
<thead>
<tr>
<th>Learning</th>
<th>Feedback</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous</td>
<td>Lecture</td>
<td>Live quiz</td>
</tr>
<tr>
<td></td>
<td>Live stream</td>
<td>(+ Tutorial)</td>
</tr>
<tr>
<td>Asynchronous</td>
<td>Textbook</td>
<td>Self test</td>
</tr>
<tr>
<td></td>
<td>Screencast</td>
<td>(+ Forum)</td>
</tr>
</tbody>
</table>

Learning:

- *Standard*: Textbook along with presentation slides.
- *Streaming*: Videos streamed simultaneously or (pre-)recorded.
Motivation and challenges

<table>
<thead>
<tr>
<th>Learning</th>
<th>Feedback</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous</td>
<td>Lecture</td>
<td>Live quiz</td>
</tr>
<tr>
<td></td>
<td>Live stream</td>
<td>(+ Tutorial)</td>
</tr>
<tr>
<td>Asynchronous</td>
<td>Textbook</td>
<td>Self test</td>
</tr>
<tr>
<td></td>
<td>Screencast</td>
<td>(+ Forum)</td>
</tr>
</tbody>
</table>

Feedback & assessment:

- **Scalability**: Randomized dynamic exercises required.
- **Feedback**: Support for complete correct solutions.
- **Flexibility**: Automatic rendering into different assessment formats.
R package exams

Exercises:
- Each exercise is a single file (either .Rmd or .Rnw).
- Contains question and (optionally) the corresponding solution.
- Dynamic templates if R code is used for randomization.

Answer types:
- Single choice and multiple choice.
- Numeric values.
- Text strings (typically short).
- Combinations of the above (cloze).
R package exams

Output:

- PDF – fully customizable vs. standardized with automatic scanning/evaluation.
- HTML – fully customizable vs. embedded into exchange formats below.
- Moodle XML.
- QTI XML standard (version 1.2 or 2.1), e.g., for OLAT/OpenOLAT.
- ARSnova, TCExam, LOPS, …

Infrastructure: Standing on the shoulders of lots of open-source software…
R package exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Software</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical computing</td>
<td>R</td>
<td>Random data generation, computations</td>
</tr>
<tr>
<td>Writing/reporting</td>
<td>\LaTeX{}, Markdown</td>
<td>Text formatting, mathematical notation</td>
</tr>
<tr>
<td>Reproducible research</td>
<td>knitr, rmarkdown, Sweave</td>
<td>Dynamically tie everything together</td>
</tr>
<tr>
<td>Document conversion</td>
<td>TtH/TtM, pandoc</td>
<td>Conversion to HTML and beyond</td>
</tr>
<tr>
<td>Image manipulation</td>
<td>ImageMagick, magick, png</td>
<td>Embedding graphics</td>
</tr>
<tr>
<td>Web technologies</td>
<td>base64enc, RCurl, …</td>
<td>Embedding supplementary files</td>
</tr>
<tr>
<td>Learning management</td>
<td>Moodle, OpenOLAT, ARSnova, …</td>
<td>E-learning infrastructure</td>
</tr>
</tbody>
</table>
Exam 1

1. Question

What is the derivative of \(f(x) = x^6\sqrt{7x} \), evaluated at \(x = 6 \)?

a. 44.03
b. 88.76
c. 37.63
d. 59.34
e. 38.24

2. Solution

Using the product rule for \(f(x) = g(x) \cdot h(x) \), where \(g(x) = x^6 \) and \(h(x) = \sqrt{7x} \), we obtain

\[
\frac{df}{dx} = g'(x) \cdot h(x) + g(x) \cdot h'(x)
\]

Where \(g(x) = x^6 \):

\[
g'(x) = 6x^5
\]

Where \(h(x) = \sqrt{7x} \):

\[
h'(x) = \frac{1}{2\sqrt{7x}} \cdot 7x = \frac{7}{2\sqrt{7x}}
\]

So:

\[
\frac{df}{dx} = 6x^5 \cdot \sqrt{7x} + x^6 \cdot \frac{7}{2\sqrt{7x}}
\]

Evaluated at \(x = 6 \), the answer is

\[
\frac{df}{dx} = 6 \cdot 6^5 \cdot \sqrt{7 \cdot 6} + 6^6 \cdot \frac{7}{2\sqrt{7 \cdot 6}}
\]

Thus, rounded to two digits we have \(f'(0.05) \approx 44.03 \).
Dynamic exercises

Text file:

1. Random data generation (optional).
2. Question.

Examples:

Multiple-choice knowledge quiz with shuffled answer alternatives.
Which of these institutions already hosted a useR! or eRum conference?

Dynamic numeric arithmetic exercise.
What is the derivative of $f(x) = x^a e^{b \cdot x}$, evaluated at $x = c$?
Dynamic exercises: .Rmd

Example: Which of these institutions already hosted a useR! or eRum conference?
Dynamic exercises: .Rmd

Example: Which of these institutions already hosted a useR! or eRum conference?

Question
========
Which of these institutions already hosted a useR! or eRum conference?

Answerlist

* Uniwersytet Ekonomiczny w Poznaniu
* Agrocampus Ouest
* Technische Universität Dortmund
* Universität Wien
* ETH Zürich
* Københavns Universitet
Dynamic exercises: .Rmd

Example: Which of these institutions already hosted a useR! or eRum conference?

Solution

The list of useR!/DSC and eRum hosts can be found at
<https://www.R-project.org/conferences.html> and <https://erum.io/>, respectively.

Answerlist

* True. eRum 2016 was hosted in Poznan.
* True. useR! 2009 was hosted at Agrocampus Ouest, Rennes.
* True. useR! 2008 was hosted at TU Dortmund.
* False. Universität Wien did not host an R conference yet (only TU Wien and WU Wien).
* False. ETH Zürich did not host an R conference yet.
* False. Københavns Universitet hosted DSC but not useR! or eRum.
Example: Which of these institutions already hosted a useR! or eRum conference?

Solution
========
The list of useR!/DSC and eRum hosts can be found at <https://www.R-project.org/conferences.html> and <https://erum.io/>, respectively.

Answerlist

* True. eRum 2016 was hosted in Poznan.
* True. useR! 2009 was hosted at Agrocampus Ouest, Rennes.
* True. useR! 2008 was hosted at TU Dortmund.
* False. Universität Wien did not host an R conference yet (only TU Wien and WU Wien).
* False. ETH Zürich did not host an R conference yet.
* False. Københavns Universitet hosted DSC but not useR! or eRum.

Meta-information
=================
exname: R conferences
extype: mchoice
exsolution: 111000
exshuffle: 5
Dynamic exercises: \texttt{.Rnw}

Example: What is the derivative of $f(x) = x^a e^{b \cdot x}$, evaluated at $x = c$?

```r
## parameters
a <- sample(2:9, 1)
b <- sample(seq(2, 4, 0.1), 1)
c <- sample(seq(0.5, 0.8, 0.01), 1)
## solution
res <- exp(b * c) * (a * c^(a-1) + b * c^a)
```
Dynamic exercises: .Rnw

Example: What is the derivative of \(f(x) = x^a e^{b \cdot x} \), evaluated at \(x = c \)?

\[
\text{res} \leftarrow \exp(b \cdot c) \cdot (a \cdot c^{(a-1)} + b \cdot c^a)
\]

...
Dynamic exercises: .Rnw

Example: What is the derivative of \(f(x) = x^a e^{b\cdot x} \), evaluated at \(x = c \)?

\begin{verbatim}
<<echo=FALSE, results=hide>>=
parameters
a <- sample(2:9, 1)
b <- sample(seq(2, 4, 0.1), 1)
c <- sample(seq(0.5, 0.8, 0.01), 1)
solution
res <- exp(b * c) * (a * c^(a-1) + b * c^a)
@
\end{verbatim}

\begin{question}
What is the derivative of \(f(x) = x^{\text{Sexpr{a}}} e^{\text{Sexpr{b}x}} \), evaluated at \(x = \text{Sexpr{c}} \)?
\end{question}
Dynamic exercises: \texttt{.Rnw}

\textbf{Example:} What is the derivative of $f(x) = x^a e^{b \cdot x}$, evaluated at $x = c$?

\begin{solution}
Using the product rule for $f(x) = g(x) \cdot h(x)$, where $g(x) := x^\{\texttt{a}\}$ and $h(x) := e^{\{\texttt{b}\cdot x\}}$, we obtain

\begin{eqnarray*}
f'(x) & = & [g(x) \cdot h(x)]' = g'(x) \cdot h(x) + g(x) \cdot h'(x) \\
& = & \texttt{a} x^{\{\texttt{a} - 1\}} \cdot e^{\{\texttt{b}\cdot x\}} + \\
& & \ldots
\end{eqnarray*}

Evaluated at $x = \texttt{c}$, the answer is

\begin{verbatim}
[e^{\{\texttt{b}\}\cdot \texttt{c}} \cdot \texttt{c}^{\{\texttt{a} - 1\}} \cdot (\texttt{a} + \texttt{b}\cdot \texttt{c}) = \texttt{fmt(res, 6)}. \]
\end{verbatim}

Thus, rounded to two digits we have $f'(\texttt{c}) = \texttt{fmt(res)}$.

\end{solution}
Dynamic exercises: .Rnw

Example: What is the derivative of $f(x) = x^a e^{b \cdot x}$, evaluated at $x = c$?

\begin{solution}
Using the product rule for $f(x) = g(x) \cdot h(x)$, where $g(x) := x^a$ and $h(x) := e^{b \cdot x}$, we obtain
\begin{eqnarray*}
f'(x) & = & [g(x) \cdot h(x)]' = g'(x) \cdot h(x) + g(x) \cdot h'(x) \\
& = & \cdot e^{b \cdot c} \cdot c^{a-1} \cdot (a + b \cdot c) = \text{\texttt{fmt(res, 6)}}. \]
Thus, rounded to two digits we have $f'(c) = \text{\texttt{fmt(res)}}$.
\end{solution}
\exauthor{derivative exp}
Dynamic exercises: Single choice

extype: schoice
exsolution: 010
Dynamic exercises: Single choice

Question
What is the seat of the federal authorities in Switzerland (i.e., the de facto capital)?
(a) Bern
(b) Lausanne
(c) Zurich
(d) St. Gallen
(e) Basel

Knowledge quiz: Shuffled distractors.

extype: schoice
exsolution: 010
Question
What is the derivative of \(f(x) = x^3 e^{3.3x} \), evaluated at \(x = 0.85 \)?

(a) 45.97
(b) 35.82
(c) 56.45
(d) 69.32
(e) 39.31

Numeric exercises: Distractors are random numbers and/or typical arithmetic mistakes.
Dynamic exercises: Multiple choice

```
extype: mchoice
exsolution: 011
```
Dynamic exercises: Multiple choice

Question
Which of these institutions already hosted a useR! or eRum conference?
(a) Agrocampus Ouest
(b) Universität Wien
(c) ETH Zürich
(d) Technische Universität Dortmund
(e) Uniwersytet Ekonomiczny w Poznaniu

Knowledge quiz: Shuffled true/false statements.

extype: mchoice
exsolution: 011
Question
In the following figure the distributions of a variable given by two samples (A and B) are represented by parallel boxplots. Which of the following statements are correct? (Comment: The statements are either about correct or clearly wrong.)

(a) The location of both distributions is about the same.
(b) Both distributions contain no outliers.
(c) The spread in sample A is clearly bigger than in B.
(d) The skewness of both samples is similar.
(e) Distribution B is about symmetric.

Interpretations: Statements that are approximately correct or clearly wrong.
Dynamic exercises: Numeric

exype: num
exsolution: 123.45
Question
Given the following information:

<table>
<thead>
<tr>
<th>Fruit 1</th>
<th>Fruit 2</th>
<th>Fruit 3</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>orange</td>
<td>585</td>
</tr>
<tr>
<td>banana</td>
<td></td>
<td>pineapple</td>
<td>144</td>
</tr>
<tr>
<td>orange</td>
<td>banana</td>
<td></td>
<td>177</td>
</tr>
</tbody>
</table>

Compute:

<table>
<thead>
<tr>
<th>Fruit 1</th>
<th>Fruit 2</th>
<th>Fruit 3</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>banana</td>
<td></td>
<td>orange</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>pineapple</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numeric exercises: Solving arithmetic problems.
Dynamic exercises: String

exetype: string
exsolution: ANSWER
Dynamic exercises: String

Question
What is the name of the R function for Poisson regression?

Knowledge quiz: Sample a word/phrase from a given vocabulary or list of question/answer pairs.

extype: string
exsolution: ANSWER
Dynamic exercises: Cloze

ex$type: cloze
ex$clozetype: schoice|num
ex$solution: 10|123.45
Question
Using the data provided in regression.csv estimate a linear regression of y on x and answer the following questions.

(a) x and y are not significantly correlated / y increases significantly with x / y decreases significantly with x
(b) Estimated slope with respect to x:

Exercises with sub tasks: Several questions based on same problem setting.

extype: cloze
exclozertype: schoice|num
exsolution: 10|123.45
One-for-All
One-for-all

- The *same* exercise can be exported into different formats.
- Multiple standalone documents vs. combined exercise pool.
- Multiple-choice and single-choice supported in all output formats.
One-for-All

Idea: An exam is simply a list of exercise templates.

R> myexam <- list(
+ "deriv2.Rnw",
+ "fruit2.Rnw",
+ c("ttest.Rnw", "boxplots.Rnw")
+)

Draw random exams:
 • First randomly select one exercise from each list element.
 • Generate random numbers/input for each selected exercise.
 • Combine all exercises in output file(s) (PDF, HTML, …).
One-for-All

Written exam:
R> exams2nops(myexam, n = 3, dir = odir,
+ language = "hu", institution = "eRum 2018")

Online test:
R> exams2moodle(myexam, n = 10, dir = odir)

Live quiz:
R> exams2arsnova(myexam, n = 1, dir = odir)

Other: exams2pdf(), exams2html(), exams2qti12(), exams2qti21(),...
Written Exams

Flexible: Roll your own.

- Combination with user-specified template in `exams2pdf()` and `exams2pandoc()`.
- Customizable but typically has to be evaluated “by hand”.

Standardized: “NOPS” format.

- `exams2nops()` intended for single- and multiple-choice questions.
- Can be scanned and evaluated automatically within R.
- Limited support for open-ended questions that have to be marked by a person.
1. What is the derivative of \(f(x) = x^7e^{3.7x} \), evaluated at \(x = 0.83 \)?
 - (a) 49.35
 - (b) 87.17
 - (c) 71.00
 - (d) 72.46
 - (e) 55.20

2. Given the following information:
 \[
 \begin{array}{c|c}
 & + \times + \\
 + & 282 \\
 \times & 137 \\
 + & 106 \\
 \end{array}
 \]
 Compute:
 - (a) 106
 - (b) 313
 - (c) 161
 - (d) 232
 - (e) 454

3. The waiting time (in minutes) at the cashier of two supermarket chains with different cashier systems is compared. The following statistical test was performed:
 - Two Sample t-test
 - data: Waiting by Supermarket
 - t = -3.3, df = 90, p-value = 1
 - alternative hypothesis: true difference in means is greater than 0
 - 95 percent confidence interval:
 - (x) -3.227 Inf
 - sample estimates:
 - mean in group Sparag: 4.045
 - mean in group Consumo: 6.192
 Which of the following statements are correct? (Significance level 5%)
 - (a) The absolute value of the test statistic is larger than 1.96.
 - (b) A one-sided alternative was tested.
 - (c) The p-value is larger than 0.05.
 - (d) The test shows that the waiting time is longer at Sparag than at Consumo.
 - (e) The test shows that the waiting time is shorter at Sparag than at Consumo.
1. Create

- As illustrated above.
- Using `exams2nops()`, create (individual) PDF files for each examinee.
Written exams

1. Create
 • As illustrated above.
 • Using \texttt{exams2nops()} to create (individual) PDF files for each examinee.

2. Print
 • Print the PDF exams, e.g., on a standard printer.
 • … or for large exams at a print shop.
Written exams

3. Exam

- Conduct the exam as usual.
- Collect the completed exams sheets.
Written exams

4. Scan

- Scan exam sheets, e.g., on a photocopier.
- Using `nops_scan()`, process the scanned exam sheets to machine-readable content.
Written exams

4. Scan

- Scan exam sheets, e.g., on a photocopier.
- Using `nops_scan()`, process the scanned exam sheets to machine-readable content.

5. Evaluate

- Using `nops_eval()`, evaluate the exam to obtain marks, points, etc. and individual HTML reports for each examinee.
- Required files: Correct answers (1.), scans (4.), and a participant list in CSV format.
Written exams

A vizsga eredménye
Név: Jane Doe
Regisztrációs szám: 1501090
Érdemjegy: 5
Pontok: 3.16666666666667

Értékelés

<table>
<thead>
<tr>
<th>Kérdés</th>
<th>Pontok</th>
<th>Adott válasz</th>
<th>Helyes válasz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000000</td>
<td>c_</td>
<td>c</td>
</tr>
<tr>
<td>2</td>
<td>0.500000</td>
<td>abc_e</td>
<td>abc_</td>
</tr>
<tr>
<td>3</td>
<td>0.000000</td>
<td>ab_d</td>
<td>ab_d</td>
</tr>
<tr>
<td>4</td>
<td>1.000000</td>
<td>c_</td>
<td>bc_</td>
</tr>
<tr>
<td>5</td>
<td>0.666667</td>
<td>d_</td>
<td>ab_d</td>
</tr>
<tr>
<td>6</td>
<td>0.000000</td>
<td>bc_e</td>
<td>a_c_</td>
</tr>
</tbody>
</table>

Vizsgalap

R University
Exam 2015-07-29

A vizsga eredménye
Név: Ambi Dexter
Regisztrációs szám: 9901071
Érdemjegy: 5
Pontok: 1.5

Értékelés

<table>
<thead>
<tr>
<th>Kérdés</th>
<th>Pontok</th>
<th>Adott válasz</th>
<th>Helyes válasz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>a_c_</td>
<td>d_</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>a_cde</td>
<td>ab_d</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>b_</td>
<td>e_</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td></td>
<td>a_cd_</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td></td>
<td>bc_</td>
</tr>
<tr>
<td>6</td>
<td>0.15</td>
<td>abc_</td>
<td>a_</td>
</tr>
</tbody>
</table>

Vizsgalap

Universität Innsbruck
Klausur 2015-07-29
E-Learning
1. Goal

- Online tests with flexible exercise types.
- Possibly: Dynamic supplements and/or complete correct solution.
- Random variations of similar exercises to reduce the risk of cheating.
- Use university’s learning management system, e.g., Moodle, …
E-Learning

2. Create

- Draw random replications from exercise templates, e.g., via `exams2moodle()`, …
- Automatically embed these into exchange file format (typically via HTML/XML).
E-Learning

2. Create

- Draw random replications from exercise templates, e.g., via `exams2moodle()`, ...
- Automatically embed these into exchange file format (typically via HTML/XML).

3. Import

- Import in learning management system.
- From there handling “as usual” in the system.
E-Learning: Online test

Preview question: R01 Q1: deriv

Question 1
Incorrect
Mark 0.00 out of 1.00

What is the derivative of \(f(x) = x^3 \cdot e^{3x} \), evaluated at \(x = 0.75 \)?

Answer: 51.83954

Check

Using the product rule for \(f(x) = g(x) \cdot h(x) \), where \(g(x) = x^3 \) and \(h(x) = e^{3x} \), we obtain

\[
\begin{align*}
 f'(x) &= [g(x) \cdot h(x)]' = g'(x) \cdot h(x) + g(x) \cdot h'(x) \\
 &= 3x^2 \cdot e^{3x} + x^3 \cdot e^{3x} \cdot 3 \\
 &= e^{3x} \cdot [3x^2 + 3x^3] \\
 &= e^{3x} \cdot x^2 \cdot (3 + 3x).
\end{align*}
\]

Evaluated at \(x = 0.75 \), the answer is

\[e^{3 \cdot 0.75} \cdot 0.75^2 \cdot (3 + 3 \cdot 0.75) = 36.501945. \]

Thus, rounded to two digits we have \(f'(0.75) \approx 36.59 \).

The correct answer is: 36.59

Preview question: R01 Q6: Im

Question 1
Correct
Mark 2.00 out of 2.90

Using the data provided in `regression.csv` estimate a linear regression of \(y \) on \(x \) and answer the following questions.

a. \(x \) and \(y \) are not significantly correlated

b. Estimated slope with respect to \(x \): -0.08

Check
E-Learning: Online test

The waiting time (in minutes) at the cashier of two supermarket chains with different cashier systems is compared. The following statistical test was performed:

Two Sample t-test

data: Waiting by Supermarket
 t = -0.09199, df = 53, p-value = 0.9284
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:
 Inf 0.0835717
sample estimates:
mean in group Sparag mean in group Consumo
 7.108248 7.065922

Which of the following statements are correct? (Significance level 5%)

- a. The absolute value of the test statistic is larger than 1.96.
- b. A one-sided alternative was tested.
- c. The p-value is larger than 0.05.
- d. The test shows that the waiting time is longer at Sparag than at Consumo.

Using the data provided in regression.csv estimate a linear regression of y on x and answer the following questions.

- a. y and x are not significantly correlated
- b. y increases significantly with x
- c. y decreases significantly with x

b. Estimated slope with respect to x: 0.08
E-Learning: Live quiz

1. Which of these institutions already hosted a useR! or eRum conference?
 - [] Universität Wien
 - [] ETH Zürich
 - [] Københavns Universitet

2. What is the derivative of $f(x) = x^9 e^{2x}$, evaluated at $x = 0.7$?
 - [] 2.43
 - [] 3.70
 - [] 2.10

3. Given the following information:
 - [] 470
 - [] 502
 - [] 166

 Compute:
 - [] ?
What else?

Under development:

- Many volunteers: Internationalization for “NOPS” exams.
- Nikolaus Umlauf: Exercise “stress tester”.
- Stefan Coors, Nikolaus Umlauf: Graphical exams manager based on shiny that can be used on a local machine or on a server.
- Achim Zeileis: Reports for lecturers based on IRT models.
- Niels Smits: Better management of exercise categories.
- Mirko Birbaumer, Andreas Melillo, Achim Zeileis: Ilias interface based on QTI 1.2.
Internationalization

More contributions welcome ...
Stress tester

R> s <- stresstest_exercise("deriv2.Rnw")
R> plot(s)

Runtimes 0.026–0.034

Histogram of numeric solutions
Stress tester

R> s <- stresstest_exercise("deriv2.Rnw")
R> plot(s)
Graphical exams manager
Graphical exams manager

Question
In the following figure the distributions of a variable given by two samples (A and B) are represented by parallel boxplots. Which of the following statements are correct? (Comment: The statements are either absolutely correct or clearly wrong.)

Solution
a. True. Both distributions have a similar location.
b. True. Both distributions have no observations which deviate more than 1.5 times the interquartile range from the box.

c. False. A distribution of B is not skewed.

d. False. Both distributions contain two outliers.

e. False. Distribution A has more observations than B.
Examining exams

Report: Exercise difficulty, student performance, unidimensionality, fairness.

Methods: Psychometrics, especially item response theory.

Example: End-term exam from first-year mathematics course for business and economics students at Universität Innsbruck.

- 729 students (out of 941 registered).
- 13 single-choice exercises on the basics of analysis, linear algebra, financial mathematics.
- Two groups with partially different pools of exercise templates.

R> library("psychotools")
R> data("MathExam14W", package = "psychotools")
R> mex <- subset(MathExam14W, nsolved > 0 & nsolved < 13)
Examining exams

Item difficulty: Raw proportions vs. Rasch model.

```r
R> plot(mex$solved, ...)
R> mr <- raschmodel(mex$solved)
R> plot(mr, ...)
```
Examining exams

Student performance: Points and person-item map.

```r
R> hist(MathExam14W$points, ...)  
R> piplot(mr)
```
Examining exams

Unidimensionality: Principal component analysis.

```r
R> pr <- prcomp(mex$solved, scale = TRUE)
R> plot(pr, ...)
R> biplot(pr, ...)
```
Examining exams

Fairness: Differential item functioning.

```r
R> ma <- anchortest(solved ~ group, data = mex, adjust = "single-step")
R> plot(ma$final_tests, ...)
```

Item difficulty parameters

-2 -1 0 1 2 3

Family-wise 95% confidence intervals
Recommendations

If you want to try [R] R/exams:

• Start with simple exercises before moving to more complex tasks.
• Focus on content of exercises.
• Don’t worry about layout/formatting too much.
• Try to build a team (with lecturers, assistants, etc.).
• Use exercise types creatively.
• Don’t be afraid to try stuff, especially in formative assessments.
• Thorough quality control for dynamic exercises before summative assessments.
Resources

Links:

Web http://www.R-exams.org/
CRAN https://CRAN.R-project.org/package=exams
Forum http://R-Forge.R-project.org/forum/?group_id=1337
StackOverflow https://stackoverflow.com/questions/tagged/exams

References: