The \texttt{R} package \texttt{bigstatsr}: memory- and computation-efficient tools for big matrices stored on disk

Florian Privé (@privefl)

eRum 2018
About

I'm a PhD Student (2016-2019) in Predictive Human Genetics in Grenoble.

Disease \sim DNA mutations $+$ \cdots
Very large genotype matrices

- previously: 15K x 280K, celiac disease (~30GB)
- currently: 500K x 500K, UK Biobank (~2TB)

But I still want to use R...
The solution I found

FBM is very similar to filebacked.big.matrix from package {bigmemory}.
Similar accessor as R matrices

```r
X <- FBM(2, 5, init = 1:10, backingfile = "test")

X$backingfile
## [1] "/home/privef/Bureau/eRum-2018/test.bk"

X[, 1]  ## ok
## [1] 1 2

X[1, ]  ## bad
## [1] 1 3 5 7 9

X[]  ## super bad

## [1,] 1 3 5 7 9
## [2,] 2 4 6 8 10
```
Similar accessor as R matrices

colSums(X[]) ## super bad

[1] 3 7 11 15 19
Split-(par)Apply-Combine Strategy

Apply standard R functions to big matrices (in parallel)

SPLIT
(e.g. every 1000 columns)

APPLY
(e.g. colSums())

COMBINE
(e.g. c())

Implemented in `big_apply()`.
Similar accessor as Rcpp matrices

```cpp
// [[Rcpp::depends(BH, bigstatsr)]]
#include <bigstatsr/BMAcc.h>

// [[Rcpp::export]]
NumericVector big_colsums(Environment BM) {
   XPtr<FBM> xpBM = BM["address"];  
   BMAcc<double> macc(xpBM);
   size_t n = macc.nrow();
   size_t m = macc.ncol();
   NumericVector res(m);
   for (size_t j = 0; j < m; j++)
      for (size_t i = 0; i < n; i++)
         res[j] += macc(i, j);
   return res;
}
```
Partial Singular Value Decomposition

15K × 100K -- 10 first PCs -- 6 cores -- 1 min (vs 2h in base R)

Implemented in `big_randomSVD()`, powered by R packages `{RSpectra}` and `{Rcpp}`.
Sparse linear models

Predicting complex diseases with a penalized logistic regression

$15K \times 280K -- 6 \text{ cores} -- 2 \text{ min}$
Other functions

- matrix operations
- association of each variable with an output
- plotting functions
- read from text files
- many other functions..

Parallel

- most of the functions are parallelized (memory-mapping makes it easy!)
- you can parallelize your own functions with big_parallelize()
I'm able to run algorithms on 100GB of data in R on my computer.
R Packages

Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr

Florian Privé, Hugues Aschard, Andrey Ziyatdinov, Michael G B Blum

Bioinformatics, bty185, https://doi.org/10.1093/bioinformatics/bty185

- {bigstatsr}: to be used by any field of research
- {bigsnpr}: algorithms specific to my field of research
Contributors are welcomed!
Thanks!

Presentation: https://privefl.github.io/eRum-2018/slides.html

Package's website: https://privefl.github.io/bigstatsr/

DOI: 10.1093/bioinformatics/bty185

@privefl @privefl F. Privé

Slides created via the R package xaringan.