Motivation

- EU-SILC \rightarrow poverty rates

- High quality indicators on national- but estimates on sub-national level have poor accuracy
 - SAE-Methods \rightarrow modelling assumptions
 - Use administrative data (see (Qinghua and Lanjouw 2009)) \rightarrow not always available

- Estimate error of differences between waves \rightarrow many covariates (tedious)

- Methodology, which is easy to apply and yields better estimates on sub-national levels?
 - \rightarrow R-Package surveysd
Motivation

- EU-SILC \rightarrow poverty rates

- High quality indicators on national- but estimates on sub-national level have poor accuracy
 - SAE-Methods \rightarrow modelling assumptions
 - Use administrative data (see (Qinghua and Lanjouw 2009)) \rightarrow not always available

- Estimate error of differences between waves \rightarrow many covariates (tedious)

- Methodology, which is easy to apply and yields better estimates on sub-national levels?
 - \rightarrow R-Package surveysd
surveysd

- R-package for variance estimation on surveys with rotating panel design

- Variance estimation via bootstrap techniques
 - Rescaled bootstrap for stratified multistage sampling (Preston, 2009)

- Improve accuracy by using multiple (consecutive) waves of the survey
 - Average bootstrap replicates over waves (Betti et al., 2012)

- Easy to use, even for R-Beginners
Main functionality

- Draw bootstrap replicates → draw.bootstrap()
- Calibrate bootstrap replicates → recalib()
- Estimate standard errors → calc.stError()
Draw bootstrap replicates

```r
draw.bootstrap(dat, REP=1000, hid="DB030", weights="RB050",
               year="RB010", strata="DB040", cluster=NULL,
               totals=NULL, single.PSU=c("merge","mean"),
               boot.names=NULL, country=NULL, split=FALSE, pid=NULL)
```

- Rectangular data set with household identifier
- Describe sampling design with strata and cluster
- Automatic detection and dealing with single PSUs
- Replicates are taken forward to mimic rotational panel design
 - Split households are considered
Draw bootstrap replicates

```r
draw.bootstrap(dat, REP=1000, hid="DB030", weights="RB050",
year="RB010", strata="DB040", cluster=NULL,
totals=NULL, single.PSU=c("merge","mean"),
boot.names=NULL, country=NULL, split=FALSE, pid=NULL)
```

- Rectangular data set with household identifier
- Describe sampling design with strata and cluster
- Automatic detection and dealing with single PSUs
- Replicates are taken forward to mimic rotational panel design
 - Split households are considered
Calibrate Bootstrap Replicates

```r
recalib(dat,hid="DB030",weights="RB050",
       b.rep=paste0("w",1:1000),year="RB010",
       country=NULL,conP.var=c("RB090"),
       conH.var=c("DB040","DB100"),...)
```

- Calibration with `ipu2()` from Package `simPop`
- Define households and/or personal variables to be calibrated onto
Estimate standard errors

calc.stError(dat, weights="RB050", b.weights=paste0("w", 1:1000),
 year="RB010", var="HX080", fun="weightedRatio",
 cross_var=NULL, year.diff=NULL, year.mean=3, bias=FALSE,
 add.arg=NULL, size.limit=20, cv.limit=10, p=NULL)

- Use output of recalib() or rectangular data with bootstrap weights
- Function \texttt{fun} is applied on variable \texttt{var} using each bootstrap weight
- Predefined functions available, also able to handle custom functions or functions from other packages
 - Must return double or integer and second argument is weight
Estimate standard errors

calc.stError(dat, weights="RB050", b.weights=paste0("w", 1:1000),
year="RB010", var="HX080", fun="weightedRatio",
cross_var=NULL, year.diff=NULL, year.mean=3, bias=FALSE,
add.arg=NULL, size.limit=20, cv.limit=10, p=NULL)

- Use output of recalib() or rectangular data with bootstrap weights.
- Function fun is applied on variable var using each bootstrap weight
- Predefined functions available, also able to handle custom functions or functions from other packages
 - Must return double or integer and second argument is weight
Estimate standard errors

- Results of point estimates are averaged over `year.mean` years (optional)
 - Apply filter with equal filter weights over time series
- Estimate standard errors for differences between waves with `year.diff` (optional)
- Estimate errors on subgroups with `cross_var` (optional)
- Estimate quantiles using parameter `p`
Estimate standard errors

calc.stError(UDB_AT, weights="weights",
 year="year", b.weights=paste0("w", 1:10),
 var="poverty", cross_var=list("region", c("gender", "region")))

Calculated point estimates for variable(s)
##
poverty
##
using function weightedRatio
##
Results hold 448 point estimates for 9 years in 28 subgroups
##
Estimated standard error exceeds 10 % of the the point estimate in 246 cases
Estimate standard errors

```r
# Apply function which is not in package 'surveysd'
# take the gini - index
library(laeken, quietly=TRUE)
# simulate income
set.seed(1234)
UDB_AT[, income:=
       exp(rnorm(.N, mean=sample(7:10, 1), sd=1)),
       by=list(urban)]

# gini() returns list
# calc.stError needs function that returns double or integer
help_gini <- function(x, w){
  return(gini(x, w)$value)
}
```
Estimate standard errors

calc.stError(UDB_AT, fun="help_gini",
 weights="weights", year="year", b.weights=paste0("w", 1:10),
 var="income", cross_var=list("region", c("gender", "region")),
 year.diff=c("2014-2008"), p=c(.025, .975))

Calculated point estimates for variable(s)
##
income
##
using function help_gini from .GlobalEnv
##
Results hold 504 point estimates for 9 years in 28 subgroups
##
Estimated standard error exceeds 10 % of the the point estimate in 22 cases
Plot Method

The following snippet demonstrates how to use the `plot` function to visualize the distribution of income across different regions in Austria:

```r
plot(res_inc, type="grouping", groups="region", sd.type="ribbon")
```

The plots show the distribution of income over the years from 2008 to 2016, grouped by regions. Each region is represented by a different color and line style, with the shaded area indicating the standard deviation.
Final Remarks

- Simple to use R-Package

- Supports a harmonious approach for estimating standard errors on surveys with rotating panel design
 - Achieve more accuracy by averaging over multiple years
 - No need for administrative data or modelling assumptions

- Check it out on github: https://github.com/statistikat/surveysd