IRT and beyond

What to do when you want to customise a model but a package doesn’t let you do that?

Krzysztof Jędrzejewski
Advanced Computing & Data Science Lab

eRum, 15 May 2018
Code examples and slides

github.com/kjedrzejewski/eRum2018
IRT

- *Item Response Theory*
- Used in psychometrics to estimate the **difficulty of a test question** (and a learner’s skill level)
- Can also be used in other areas, e.g. to assess **ad clickability**
1PL IRT model

- 1-parameter logistic (1PL) is the most basic IRT model
- **Assumption**: the probability of answering a test question correctly depends only on the difference between a student’s skill and that question’s difficulty
- **Observed data:**
 - which question was answered?
 - by which student?
 - was the answer correct or incorrect?

https://github.com/kjedrzejewski/eRum2018
Many ways to estimate parameter values with R

- Using a dedicated IRT package, e.g. TAM
- As random effects in logistic regression model, e.g. with lme4
- Using gradient descent, e.g. with TensorFlow
- Using probabilistic programming, e.g. with stan or greta

TensorFlow
Stan
Greta
Using a dedicated IRT package

+ We just need to convert the data to the expected format and **call a function**

+ Usually **the fastest way** to estimate model parameters

- Such packages almost always support only most popular models

- **Doesn’t let us to estimate a custom model parameters**

Example packages: *TAM, eRm, mirt*

Example code: github.com/kjedrzejewski/eRum2018/blob/master/1pl_irt.R
Using logistic regression with random effects

Question difficulties and skill levels are random effects related to questions and students

+ Allows us to add **additional variables and parameters** to the model

- The model needs to remain a **linear combination** of observed variables

Example packages: *lme4*

Example code: github.com/kjedrzejewski/eRum2018/blob/master/1pl_me.R
Using gradient descent (e.g. with TensorFlow)

Maximum Likelihood Estimation of model parameters using cross entropy and gradient descent based optimisers

- Allows us to have **non-linear components** in the model
- Can use **GPU to speed up** computations

- We need to write **a lot of code** to describe dependencies between data and model parameters, and to establish the optimisation process
- We need to create our **own stop condition**

Example packages: **tensorflow**

Example code: github.com/kjedrzejewski/eRum2018/blob/master/1pl_tf.R
Using probabilistic programming (with *stan*)

+ Provides credible intervals of estimated model parameters, which gives us **information about the precision of our estimates**

- Model needs to be expressed in the *stan language*

- Sampling is **time-consuming**, esp. for big datasets

Example packages: *rstan*

Example code: [github.com/kjedrzejewski/eRum2018/blob/master/1pl_stan.R](http://mc-stan.org/users/interfaces/rstan)
Using probabilistic programming (with *greta*)

+ Also gives us **information on the precision** of our estimates (like *stan*)
+ We define the model using **native R syntax** (unlike *stan*)
+ It’s built on top of TensorFlow, so it can **leverage GPU** for computation

- Sampling is still **time-consuming**

Example packages: *greta*

Example code: https://github.com/kjedrzejewski/eRum2018/blob/master/1pl_greta.R
Benchmark, 1PL, small sample

100 questions, 1000 people => 100,000 observations

<table>
<thead>
<tr>
<th>Method</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAM</td>
<td>0.9 s</td>
</tr>
<tr>
<td>lme4</td>
<td>24.3 s</td>
</tr>
<tr>
<td>tensorflow</td>
<td>4.5 min.</td>
</tr>
<tr>
<td>greta</td>
<td>18.9 min.</td>
</tr>
<tr>
<td>stan</td>
<td>32.2 min.</td>
</tr>
</tbody>
</table>

Source: https://github.com/kjedrzejewski/eRum2018/blob/master/tests_1pl.R
Benchmark, 1PL, small sample

100 questions, 1000 people => 100 000 observations

<table>
<thead>
<tr>
<th></th>
<th>Macbook Pro (CPU-only calculations)</th>
<th>AWS p3.2xlarge nVidia Tesla V100</th>
<th>GPU speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAM</td>
<td>0.9 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lme4</td>
<td>24.3 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tensorflow</td>
<td>4.5 min.</td>
<td>1.7 min.</td>
<td>~2.65x</td>
</tr>
<tr>
<td>greta</td>
<td>18.9 min.</td>
<td>11.9 min.</td>
<td>~1.59x</td>
</tr>
<tr>
<td>stan</td>
<td>32.2 min.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Benchmark, 1PL, large sample

500 questions, 5000 people => 2,500,000 observations

<table>
<thead>
<tr>
<th></th>
<th>Macbook Pro (CPU-only calculations)</th>
<th>AWS p3.2xlarge nVidia Tesla V100</th>
<th>GPU speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAM</td>
<td>47.3 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lme4</td>
<td>30.2 min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tensorflow</td>
<td>42.4 min.</td>
<td>3.8 min.</td>
<td>~11.16x</td>
</tr>
<tr>
<td>greta</td>
<td>5.8 h</td>
<td>39.4 min.</td>
<td>~8.83x</td>
</tr>
<tr>
<td>stan</td>
<td>too long :(</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

https://github.com/kjedrzejewski/eRum2018/blob/master/tests_1pl.R

eRum 2018
Takeaways

- TensorFlow may be used for other tasks than deep learning
- GPU may be used to speed up parameter estimation of a large group of models
- For large samples, it may be faster to estimate parameters of a linear model using TensorFlow with GPU, than using specialized regression libraries
- Speed-up offered by GPU increases with data size