Quality Assurance in Healthcare with R

Titus Laska, Dirk Schumacher, Michael Höhle

Federal Institute for Quality Assurance and Transparency in Healthcare, Germany
Unit for Medical Biometry and Statistics

erum2018 lightning talk
Budapest, Hungary, 16 May 2018
Central institution for the quality assurance in the German public healthcare system

Founded in 2015
What we do - an example

In-hospital mortality due to community-acquired pneumonia
What we do - an example

In-hospital mortality due to community-acquired pneumonia

Software specification
For data collection in the hospitals

Patient Data
≥ 250,000 cases annually

medical, statistical, and IT experts
What we do - an example

In-hospital mortality due to community-acquired pneumonia

Software specification for data collection in the hospitals

Patient Data
\[\geq 250,000 \] cases annually

Quality indicator specification

Computational rule

\textit{Software specification and computational rules are publicly available on our website}
What we do - an example

In-hospital mortality due to community-acquired pneumonia

Software specification for data collection in the hospitals

Patient Data
≥ 250,000 cases annually

Quality indicator specification
Computational rule

Results

Structured dialogue with providers for quality assessment and improvement
How we use R

At the Medical Biometry and Statistics Unit, we use R

- for ad hoc analysis of data
- for the development of new statistical methodologies
- for internal reporting tools (e.g. shiny)

- in production: packages for automatic computation of results
 - e.g. 21 million numbers for our standard routine report
How we use R

Funnelplots

Anzahl Fälle/ Prozeduren

Indikatorergebnis (Rate)

Auffällig

Anzahl Standorte

Grenze für

rechnerische Auffälligkeit

statistische Auffälligkeit

Referenzbereich

Nein

Rechnerisch

Statistisch

1

2
Internal infrastructure

- Statistical analysis is a team effort!
- Code review and automatic tests
- Independent proof-calculation of results
- Aim: Maintain high quality of analyses and published results
Internal infrastructure

- Internal package repository (~10 actively used packages)
- Shiny server:
External transparency

Computation rules for our ~280 quality indicators

- Definition of the relevant sets from the data
- Specification on how to count
- Will be published as R code
External transparency

- Mostly simple Boolean expressions in base R:

 \[
 \text{age} \geq 18 \ \& \ \text{blood_pressure} \geq 140
 \]

- Special abstractions to make code more compact:

 \[
 \text{diagnosis_code} \%\text{isAnyLike}\% \text{ICD}\$\text{ICD_Infection}
 \]

 \[
 \text{all(postoperative_infect} = 0) \%\text{group_by}\% \text{patient_id}
 \]
R package IQTIGpvci

- We recently published our first R package: IQTIGpvci
- Reference implementation illustrating methodologies for performing hospital classification in the context of uncertainty
External transparency

R package IQTIGpvci

- Available on our website:

 Downloads (R-Paket)

 - IQTIG – R functions for hospital profiling
 2018 / 09.04.2018 / PDF / 143 KB

 - IQTIG – R functions for hospital profiling (Package "IQTIGpvci")
 2018 / 09.04.2018 / GZ / 60 KB

 - IQTIG – R functions for hospital profiling (Package "IQTIGpvci" description)
 2018 / 09.04.2018 / HTML / 78 KB
 https://iqtig.org/das-iqtig/grundlagen/biometrische-methoden/

- Licensed under GPL Version 3
External transparency

<table>
<thead>
<tr>
<th>Ermittlung statistischer Auffälligkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistischer Test</td>
</tr>
<tr>
<td>Signifikanzniveau</td>
</tr>
<tr>
<td>Pseudocode</td>
</tr>
</tbody>
</table>

Example of R code (using IQTIGpvci) published in a juristic document (plan. QI directive, G-BA 2016)

Summing up

- R supports us in our mission to improve healthcare quality in Germany
- R enables us to be more transparent, because it’s open source