FITTING HUMANS STORIES IN LIST COLUMNS

Cases from an Online Recruitment Platform

Omayma Said

@OmaymaS
Find the Best Jobs in Egypt
Searching for vacancies & career opportunities? WUZZUF helps you in your job search in Egypt

Search Jobs (e.g. internships) 7,560 Open Jobs

WUZZUF The Leading Job Site in EGYPT
19th Century

Adolphe Quetelet
THE AVERAGE MAN
(L’homme Moyen)

Adolphe Quetelet
THE AVERAGE MAN

Physical
Weight, Height
(Body Mass Index)
The AVERAGE MAN

Moral Crimes
THE AVERAGE MAN

= PERFECTION
If an individual at any given epoch of society possessed all the qualities of the **AVERAGE MAN**, he would represent all that is great, good, or beautiful.

Adolphe Quetelet
Who Is The “AVERAGE MAN” in Your Society?
Are You Just a Deviant from The “AVERAGE MAN”?
Many Disagree!
Now...
Now...

Tremendous Growth of Data
Misuse of SUMMARY STATISTICS
The average millennial spends $96 billion on food. Here’s how we break it down:

bonap.it/bxcVWz7
Just How Food-Obsessed Is the Typical Millennial?

Millennials are forking over $96 billion a year on food. Here, a less-than-scientific look at their purchases.

February 16, 2016
By Anna Peele
Misuse of SUMMARY STATISTICS

The average American family would get a $4,000 raise under the President’s tax cut plan. So how could any member of Congress be against it?
The average American family would get a $4,000 raise under the President’s tax cut plan. So how could any member of Congress be against it?

1:37 AM - 23 Oct 2017

What would your family do w/ a $4,000 raise from the President’s tax cut plan? REPLY & I’ll share your family’s story in the press briefing

2:13 AM - 23 Oct 2017
We’d hire a statistics tutor to teach us the distinction between the mean and the median.

Sarah Sanders @PressSec
Replying to @PressSec
What would your family do w/ a $4,000 raise from the President’s tax cut plan? REPLY & I’ll share your family’s story in the press briefing

2:13 PM - 23 Oct 2017

Sarah Sanders @PressSec
The average American family would get a $4,000 raise under the President’s tax cut plan. So how could any member of Congress be against it?
1:37 AM - 23 Oct 2017
there comes a time in every data scientist's career when management asks you to take an average of averages, and that's when you find out what you're really made of.
Find the Best Jobs in Egypt

Searching for vacancies & career opportunities? WUZZUF helps you in your job search in Egypt.
Explore the Right Jobs & Career Opportunities

Explore the feed knows what you need, based on your career interests, will find you what you are searching for. And don't worry about too many opportunities, you can always save them for later.

Track Your Application, the Easy Way

Track your job application status whether it is viewed, shortlisted, rejected, or if a company accessed your contacts. With the tracking feature, you will be one step ahead on your job hunting plan.

Take Control Over Your Exposure

With WUZZUF new profile you are in full control. You can make it public so you can use it to brand yourself, or make it visible only for employers to invite you to apply.

Get Started Now
What Do We Optimize For?

1. Quality
2. Quantity
3. Relevance

Matching Jobs & Job Seekers
Let’s talk about DATA KPIs METRICS
“The average job seeker applies for N jobs per month”

Me:
“The **average** number of applications per job this month is GREAT”
What AVERAGE Do You Measure?
Who is The AVERAGE Job Seeker?
Can We Tell Better STORIES About Our Users?
We can tell better stories with...

Contextual Understanding + Effective Data Analysis
Contextual Understanding + Effective Data Analysis

- Culture
- Socioeconomic Status
- Market Dynamics
Effective Data Analysis

Contextual Understanding

+ Mindset
+ Workflow
+ Framework/Tools
Contextual Understanding

Culture
Socioeconomic Status
Market Dynamics

Effective Data Analysis

Mindset
Workflow
Framework/Tools
Effective Data Analysis

Contextual Understanding + Effective Data Analysis = Better Stories
Contextual Understanding + Effective Data Analysis = Actionable Insights
Framework/Tools

Compatible Packages

http://r4ds.had.co.nz

https://speakerdeck.com/hadley/tidyverse
The Tidyverse

Let's focus on

3 Main Concepts
Three Main Concepts

1. Tidy Data

by: @inundata & @jcheng
Three Main Concepts

1. Tidy Data
 - A variable in a column
 - An observation in a row
 - Tidy your data
 - And here you go!

[tibble, tidyr, dplyr, and friends]
Data comes from different SOURCES

And more...
Data comes in different formats.
Data comes in different formats. Read Tidy DATAFRAME (TIBBLE)
<table>
<thead>
<tr>
<th>user</th>
<th>job_id</th>
<th>job_title</th>
<th>company</th>
<th>application_date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sara</td>
<td>A1234</td>
<td>Software Developer</td>
<td>Company A</td>
<td>2017-01-02</td>
</tr>
<tr>
<td>Sara</td>
<td>A1568</td>
<td>Senior Software Engineer</td>
<td>Company B</td>
<td>2017-03-02</td>
</tr>
<tr>
<td>Sara</td>
<td>A1590</td>
<td>Software Engineer</td>
<td>Company C</td>
<td>2017-03-03</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Omar</td>
<td>A1234</td>
<td>Software Developer</td>
<td>Company A</td>
<td>2017-01-03</td>
</tr>
<tr>
<td>Omar</td>
<td>A1580</td>
<td>Android Developer</td>
<td>Company C</td>
<td>2017-01-20</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Three Main Concepts

2

Nested Data
Three Main Concepts

2

Nested Data

One row per group

Instead of

One row per observation

[tidyR]
Nested Data

```
user | job_id  | job_title          | company    | application_date  
--- | ------- | ------------------- | ---------- | ------------------ 
Sara | A1234   | Software Developer | Company A  | 2017-01-02         
Sara | A1568   | Senior Software    | Company B  | 2017-03-02         
Sara | A1590   | Software Engineer  | Company C  | 2017-03-03         
Omar | A1234   | Software Developer | Company A  | 2017-01-03         
Omar | A1580   | Android Developer  | Company C  | 2017-01-20         
```

- `user_data %>% group_by(user) %>% nest(.key = "applications")`
- `user | applications
 Sara | <Tibble [3 x 4]>
 Omar | <Tibble [2 x 4]>
 |`
Nested Data

<table>
<thead>
<tr>
<th>user</th>
<th>job_id</th>
<th>job_title</th>
<th>company</th>
<th>application_date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sara</td>
<td>A1234</td>
<td>Software Developer</td>
<td>Company A</td>
<td>2017-01-02</td>
</tr>
<tr>
<td>Sara</td>
<td>A1568</td>
<td>Senior Software Engineer</td>
<td>Company B</td>
<td>2017-03-02</td>
</tr>
<tr>
<td>Omar</td>
<td>A1234</td>
<td>Software Developer</td>
<td>Company A</td>
<td>2017-01-03</td>
</tr>
<tr>
<td>Omar</td>
<td>A1580</td>
<td>Android Developer</td>
<td>Company C</td>
<td>2017-01-20</td>
</tr>
</tbody>
</table>

```r
job_data %>%
group_by(job_id) %>%
nest(.key = "applications")
```

<table>
<thead>
<tr>
<th>job_id</th>
<th>applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1234</td>
<td><Tibble [2 x 4]></td>
</tr>
<tr>
<td>A1568</td>
<td><Tibble [30 x 4]></td>
</tr>
<tr>
<td>A1590</td>
<td><Tibble [100 x 4]></td>
</tr>
<tr>
<td>A1580</td>
<td><Tibble [120 x 4]></td>
</tr>
</tbody>
</table>
Three Main Concepts

Functional Programming
Functional Programming

Three Main Concepts

Handle iteration problems powerfully and emphasize the actions rather than the objects

[purrrr]
Let's store models in columns

<table>
<thead>
<tr>
<th>job_id</th>
<th>applications</th>
<th>app_count</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5638</td>
<td><tibble [362 x 27]></td>
<td>362</td>
</tr>
<tr>
<td>A8957</td>
<td><tibble [110 x 27]></td>
<td>110</td>
</tr>
<tr>
<td>.....</td>
<td>.....</td>
<td>.....</td>
</tr>
</tbody>
</table>

```r
job_app_data <- job_app_data %>%
  mutate(glm_model = map(app_data, ~ glm(viewed ~ app_day,
                                          data = .x, family = binomial)))
```
Let’s store models in columns

```
job_app_data <- job_app_data %>%
  mutate(glm_model = map(app_data, ~ glm(viewed ~ app_day,
                                     data = .x, family = binomial)))
```
Iterate and answer more questions

```r
user_data <- user_data %>%
  mutate(common_jobs = map2(applications, preferences, ~intersect(.x[['job_title']], .y[['job_title']])))
```

<table>
<thead>
<tr>
<th>user</th>
<th>applications</th>
<th>preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sara</td>
<td><tibble [2 x 10]></td>
<td><tibble [4 x 10]></td>
</tr>
<tr>
<td>Omar</td>
<td><tibble [2 x 15]></td>
<td><tibble [2 x 10]></td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>
Iterate and answer more questions

<table>
<thead>
<tr>
<th>user</th>
<th>applications</th>
<th>preferences</th>
<th>common_jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omar</td>
<td><tibble [2 x 15]></td>
<td><tibble [2 x 10]></td>
<td><chr [0]></td>
</tr>
<tr>
<td>……</td>
<td>……</td>
<td>……</td>
<td>……</td>
</tr>
</tbody>
</table>

```r
user_data <- user_data %>%
  mutate(common_jobs = map2(applications, preferences,
    ~ intersect(.x[["job_title"]], .y[["job_title"]]))
```
Let’s Look Closer!
Problem

Overall growth and good KPIs

Shortage in applications for certain Software Development jobs
Problem

Shortage in applications for certain Software Development jobs

Dissatisfied Employers
Problem

Shortage in applications for certain Software Development jobs

Flagged by different sources
Problem

Shortage in applications for certain Software Development jobs

Masked by high-level metrics
The game,
1. Talent Shortage

What if we just have a small pool of job seekers who are interested in the affected jobs?
Hypotheses

2 Irrelevant Jobs

Maybe employers are not catching up with the global trends or job seekers aspirations!
Hypotheses

3

Hidden Jobs

What if some jobs do not get enough exposure in the search/recommendation pages?
Investigation

1st The Job’s Side
What about applications details per job?

```r
job_app <- left_join(jobs, apps,
    by = c("job_id" = "job_id")) %>%
  group_by(job_id, job_title, post_date) %>%
  nest(.key = "app_data")
```

A tibble: 2,934 x 5

<table>
<thead>
<tr>
<th>job_id</th>
<th>job_title</th>
<th>app_data</th>
<th>app_count</th>
</tr>
</thead>
<tbody>
<tr>
<td>5e934219</td>
<td>Junior Communication Engineer</td>
<td><tibble [219 x 4]></td>
<td>219</td>
</tr>
<tr>
<td>cba698f2</td>
<td>Web Developer</td>
<td><tibble [26 x 4]></td>
<td>26</td>
</tr>
<tr>
<td>60596486</td>
<td>Office Manager</td>
<td><tibble [45 x 4]></td>
<td>45</td>
</tr>
<tr>
<td>f4343410</td>
<td>Real Estate Sales Executive</td>
<td><tibble [29 x 4]></td>
<td>29</td>
</tr>
<tr>
<td>124aae63</td>
<td>Senior SharePoint Developer</td>
<td><tibble [17 x 4]></td>
<td>17</td>
</tr>
</tbody>
</table>
... with 2,929 more rows, and 1 more variables: post_date <date>
The Job’s Side

Job applications details

```
# A tibble: 219 x 4

application_id application_date user_id app_day
  <chr>              <date>     <chr>   <time>
1 66851a93          2017-04-03 8d6cfddf 0 days
2 c71e39f5          2017-04-03 c6223d74 0 days
3 e53333f3          2017-04-03 56c5c8df 0 days

# ... with 216 more rows
```

```
# A tibble: 2,934 x 5

job_id job_title                              app_data app_count
    <chr>                        <chr>          <list>   <int>
1 5e934219 Junior Communication Engineer <list>     [219 x 4] 219
2 cba698f2 Web Developer               <list>     [26 x 4]  26
3 60596486 Office Manager               <list>     [45 x 4]  45
4 f4343410 Real Estate Sales Executive <list>     [29 x 4]  29
5 124aae63 Senior SharePoint Developer <list>     [17 x 4]  17

# ... with 2,929 more rows, and 1 more variables: post_date <date>
```
What about iOS job applications?

```r
job_app_ios <- job_app %>%
  filter(grepl("\biOS\b", job_title ))
```

```
# A tibble: 34 x 4

  job_id    job_title         app_data     app_count
     <chr>    <chr>          <list>        <int>
1 54344870  iOS Developer <tibble [2 x 4]>     2
2 d647f642  iOS Developer <tibble [2 x 4]>     2
3 b3e9f878  iOS Developer <tibble [6 x 4]>     6
4 b137842c  iOS Developer <tibble [7 x 4]>     7
5 7b1f1998  iOS Developer <tibble [10 x 4]>   10
# ... with 29 more rows
```
Job Applications Growth over time

iOS Developers Jobs
What happens to job posts on day X?

iOS Developers Jobs

Day 7

Applications (Cumulative)

app_count > 50
- FALSE
- TRUE
What is special about these jobs?

iOS Developers Jobs

Mobile Developer (iOS, Android)

Applications (Cumulative)

Day

app_count > 50

FALSE

TRUE
What about the rest?
More with Shiny...

Sample of Wuzzuf Job Posts
Investigation

2nd

The Job Seeker's Side
The Job Seeker’s Side

How do job seekers fill their profiles?

```r
js_data_details <- js_data%
filter(grepl("\\bios\\b", query_list)) %>%
mutate(kw_freq = map(query_list, ~ tidytext::unnest_tokens(.x, term, value,
token = "regex",
pattern = "\|") %>%
count(term, sort = TRUE)))
```

tidytext
The Job Seeker’s Side

How do job seekers fill their profiles?

Details of job seeker’s keywords

```r
# A tibble: 388 x 3
  user_id query_list kw_freq
     <chr>     <list>    <list>
1 4003e037 <chr [1]> <tibble [19 x 2]>
2 9d0ba246 <chr [1]> <tibble [20 x 2]>
3 eeac5b9e <chr [1]> <tibble [24 x 2]>
4 32a1e586 <chr [1]> <tibble [22 x 2]>
# ... with 383 more rows
```

```r
# A tibble: 22 x 2
  term         n
  <chr>      <int>
1 asp net     3
2 android engineer  1
3 android      1
4 asp          1
5 c#          1
# ... with 17 more rows
```
The Job Seeker’s Side

What about the repetition in the extracted keywords?

```r
js_data_details <- js_data %>%
  filter(grepl("\\bios\\b", query_list)) %>%
  mutate(kw_freq = map(query_list, query_kw_freq)) %>%
  mutate(kw_count = map_int(kw_freq, nrow)) %>%
  mutate(kw_freq_max = map_int(kw_freq, ~max(.x["freq"])))
```
The Job Seeker’s Side

What about the repetition in the extracted keywords?

```r
js_data_details <- js_data %>%
  filter(grepl("\\bios\\b", query_list)) %>%
  mutate(kw_freq = map(query_list, query_kw_freq)) %>%
  mutate(kw_count = map_int(kw_freq, nrow)) %>%
  mutate(kw_freq_max = map_int(kw_freq, ~max(.x[["freq"]])))
```

A tibble: 388 x 5

<table>
<thead>
<tr>
<th>user_id</th>
<th>query_list</th>
<th>kw_freq</th>
<th>kw_count</th>
<th>kw_freq_max</th>
</tr>
</thead>
<tbody>
<tr>
<td><chr></td>
<td><list></td>
<td><list></td>
<td><int></td>
<td><int></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td><chr [1]></td>
<td><tibble [19 x 2]></td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td><chr [1]></td>
<td><tibble [20 x 2]></td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td><chr [1]></td>
<td><tibble [22 x 2]></td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td><chr [1]></td>
<td><tibble [15 x 2]></td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

Summaries from Job Seeker's Keywords

... with 383 more rows
The Job Seeker’s Side

Which jobs match each user’s profile?

```r
js_data_details <- js_data_details %>%
  mutate(jobs_search_results = map(query_list,
                                 ~ solrium::solr_search("jobs",
                                              q = .x,
                                              fl = job_fields,
                                              rows = 20)))
```
Which jobs match each user's profile?

```r
ts_data_details <- js_data_details %>%
  mutate(jobs_search_results = map(query_list,
                                 ~ solrium::solr_search("jobs",
                                                 q = .x,
                                                 fl= job_fields,
                                                 rows = 20)))
```

A tibble: 388 x 6
##
user_id query_list kw_freq jobs_search_results kw_count
<chr> <list> <list> <list> <int>
5 f48c2ee0 <chr [1]> <tibble [15 x 2]> <tibble [20 x 5]> 15
... with 383 more rows, and 1 more variables: kw_freq_max <int>
The Job Seeker’s Side

Which jobs match each user’s profile?

Recommended Jobs

Details

A tibble: 20 x 5
 job_id job_title post_date <chr> <chr>
1 a871cd4 Senior Web & Mobile Apps Developer 2017-03-04T18:03:01Z
2 48cd2159 Mobile Apps Developer 2017-06-20T01:00:00Z
3 6ed48d5e Full Stack Team Leader 2017-02-21T09:49:57Z
4 694443c8 .NET Software Developer 2017-03-07T16:03:09Z
5 cc8381d8 Senior Android Engineer 2017-03-12T16:36:18Z

A tibble: 388 x 6
 user_id query_list kw_freq jobs_search_results kw_count
 <chr> <list> <list> <list> <int>
5 f48c2ee0 <chr [1]> <tibble [15 x 2]> <tibble [20 x 5]> 15

... with 383 more rows, and 1 more variables: kw_freq_max <int>
What ACTIONS Did This Analysis Trigger?
Recommended Actions

1. **Talent Shortage**
 - Acquire more senior developers
 - Activate the existing developers
 - Support the community
Recommended Actions

Irrelevant Jobs

- Advise employers about the market
- Revisit preference-based matching
Recommended Actions

3

Hidden Jobs

- Revisit text fields indexing
- Tune field weights for scoring
- Improve mail recommendation
3 Main Concepts

- Tidy Data
- Nested Data
- Functional Programming

Contextual Understanding + Effective Data Analysis = Actionable Insights

@OmaymaS
FITTING HUMANS STORIES
IN LIST COLUMNS

Cases from an Online Recruitment Platform

Omayma Said
@OmaymaS